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Differential equations are derived which exactly govern the evolution of the
second order response moments of a single-degree-of-freedom (SDOF) bilinear
hysteretic oscillator subject to stationary Gaussian white noise excitation. Then,
considering cases for which response stationarity will be achieved, i.e.,
excluding the case of an elastic—perfectly-plastic oscillator, algebraic equations
for the response moments are found. By the nature of the problem, these
moments depend on the probability of the oscillator being in the plastic state.
Upon considering oscillators with low yield levels and using analytically
available information, physical reasoning, and approximations supported by
empirical observation, an equation for the probability of the oscillator being in
the plastic state is derived. Upon numerical solution of this equation, analytical
approximations to the response moments can be obtained. All analytical,
approximate, and numerical results are verified by extensive Monte Carlo
simulations.

© 1999 Academic Press

1. INTRODUCTION

Over the last few decades, the problems of predicting the response and reliability
of hysteretic systems subject to random excitation have received considerable
attention. While this attention has mainly stemmed from the engineering
usefulness of hysteretic systems in the modelling of actual physical and
mechanical phenomena, it has also been due to the inherent difficulty in
obtaining exact closed-form solutions to these problems. As a consequence,
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various approximate analytical procedures for handling the non-linearity and
non-analyticity of hysteretic systems have been proposed. Among the
approximate analytical methods most commonly used include Markov methods
[1-7, 31], equivalent linearization [8—17], equivalent non-linearization with
cumulant-neglect closure [18], the associated linear oscillator approach [19-26],
and the Slepian process approach [27-29]. (It should be noted that due to the
enormous amounts of literature on hysteretic systems, the foregoing is by no
means an exhaustive list of references on the subject.) While most of the above-
cited techniques produce good to excellent results for weakly to moderately non-
linear oscillators, when highly non-linear oscillators are considered, such as when
the yield level is low relative to the standard deviation of the corresponding
linear oscillator and/or the secondary to primary stiffness is small, the accuracy
of most of the aforementioned techniques breaks down or the methods are not
justifiably applicable (i.e., the assumptions underlying the methods are not
valid). In such cases, Monte Carlo methods are often the only recourse to
solving the problem.

In this paper, a bilinear hysteretic oscillator is considered subject to stationary
Gaussian white noise excitation. Such an oscillator is often used as an idealized
model of a simple structure undergoing earthquake excitations. As such, it may
often be necessary to determine approximate, yet accurate, statistics of the
oscillator’s  stationary response—especially the standard deviation of
displacement—quickly and efficiently. To this end, a system of differential
equations is derived that exactly governs the second order response moments of
the bilinear hysteretic oscillator. Then, considering cases of response stationarity,
that is, excluding the case of an elasto—plastic oscillator, the differential
equations can be reduced to algebraic equations that depend not only on the
unconditional moments of response but also on the probability of the oscillator
being in the plastic state as well as on response moments conditioned on the
oscillator being in the plastic state. Using physical reasoning supported by
empirical observation for the case of low yield levels, a priori bounds on the
conditional response moments are obtained. These bounds in conjunction with
analytical and empirical approximations of unprovided response moments lead
to an equation for the probability of being in the plastic state. Upon numerical
solution of this equation, analytical approximations of the unconditional
standard deviations of velocity and displacement follow immediately. The
accuracy of these approximations as well as the accuracy of all analytical,
approximate, and numerical results contained herein is verified through extensive
Monte Carlo simulations. In addition, a comparison is made between results
from the proposed method and those found by the method of stochastic
averaging.

2. MOMENTS EQUATIONS

Consider the following equations of motion for a SDOF bilinear hysteretic
oscillator excited by Gaussian white noise [30],

X + 28m0X + 0} (aX + (1 — ) Z) = W(1), (1)
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Z=X{1-HX)H(Z—u)— H-X)H(-Z —u)}, (2)

X(0) = X(0) = Z(0) = 0, (3)

where X, X, and X denote, respectively, the random displacement, velocity, and
acceleration of the oscillator; Z, the random hysteretic component of the
response; W(f), a zero-mean Gaussian white noise excitation with double-sided
spectral density Sy; &, the damping ratio; wg, the circular eigenfrequency of the
corresponding linear oscillator; «, the secondary to primary stiffness ratio; u, the
positive yield level of the oscillator; and H(-), a Heaviside step-function defined

as
|1, ify>0;
H(y) = {O, otherwise. } (4)
In state vector form, the foregoing equations can be written as
dY = a(Y) dt + b dB(2), (5)
where
X X 0
Y=|X|, a(Y)=| —2lwpX — wj(aX + (1 — ) Z) , b=|1
z X{1 - HX)H(Z —u) — H=X)H(—Z — u)} 0
(6)

and B(¢) is a Wiener process. The vector a is referred to as the drift vector and
the vector b, in general, is known as the diffusion matrix (here it reduces to a
vector).

Equation (5) represents a vector Markov diffusion process interpreted in the
It6 sense and as such, [td’s differential formula can be applied to derive
equations that govern the evolution of the response moments. It6’s differential
formula for an arbitrary, well-behaved function /Y, ) of the state vector Y and
time ¢ is given by

8f n af ln n 82f
== = dy;+1 Y;dY,.
df 8tdz+;ayid +2IZ;]Z;8Y[8de dy; (7)

By substituting equation (5) into equation (7), letting f(Y, ) = Y;" Y > --- Y7,
and taking the expectation, differential equations for the mth order joint
moments of response quantities can be derived, where m = X;m;.

The resulting general expressions for first and second order joint moments are

given by
fiy = Elai], &y = Ela; Y| + Ela;Yi] + bib;, (8,9)
where E[] is the expectation operator, u; = E[Y;] and x; = E[Y,Y)], and Y}, a;,

and b; denote the jth components of the vectors Y, a, and b, respectively. Since
consideration of moments higher than order two would lead to significantly
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more equations and, consequently, analytic intractability, first and second order

response moments will be considered herein. (For a given problem, it will be left

up to the analyst to decide whether these moments provide useful information.)
Due to the asymmetry of the drift vector, namely,

a(Y) = —a(-Y), (10)

E[a;] = 0 for each i as a result of the zero initial conditions. Then, equation (8)
implies that the vector of first order response quantities is identically zero, i.e.,
u; = 0 for each i. Hence, only second order moments will be considered in what
follows.

Substituting equation (6) into equation (9) yields the following set of
differential equations governing the time evolution of the second order joint
moments of response (dependence of the joint moments on time is suppressed
for notational convenience):

ki = 2K1, K12 = Ko — 2Ewoka — wf (ot + (1 — a)xi3),
k13 = ka3 + k1 — E[XXH(X) H (Z — u)] — E[XXH(-X)H(-Z — u)],

Ky = —4&woran — 2w5(om12 + (1 — a)ka3) + 2718, (1)
11

K3 = —2Emgkay — of(aky3 + (1 — a)k33) + Kk
— E[X*H(X)H(Z — u)] — E[X*H(—X)H(—Z — u)],

k33 = 2K03 — 2E[XZH(X)H(Z — u)] — 2E[XZH(—X)H(—Z — u)],
where
K11 = E[Xz], K1 = E[XX], K13 = E[XZ], Ko = E[XZ], Ky3 = E{XZ]

and
K33 = E[Zz] .

In most approximate analyses involving moment equations, the expectations
above involving Heaviside functions are replaced by equivalent polynomial
expansions of various orders. Here these expectations will be expressed as
response moments conditioned on the oscillator being in the plastic state. To this
end, let py;,(x, &, z) represent the joint probability density function of X, X and
Z. This joint probability density is of the mixed type in the sense that X and X
are continuous variables of infinite range whereas Z ranges only between —u and
u and has a finite probability of assuming the values —u or u. In addition, let
P{Z = u} represent the probability that the oscillator has reached the positive
yield state. Due to the symmetry of the oscillator, the probability of being in the
positive yield state is equal to the probability of being in the negative yield state,
ie., P{Z =u} = P{Z = —u}. With these conventions established, consider the
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term E[XXH(X)H(Z — u)]. This term can be rewritten as

+

E[XXH(X)H(Z — u)] = JOO dx xJOO dx x H(x) Ju 7 dz H(z —u)pyi,(x, X, z)

—00 —00

= J dx x[ dX X pyi,(x, X|z = u)P{Z = u}
0

—0Q

= P{Z = u}E[XX|Z = u. (12)

Intuitively, the result is clear, the term XXH(X)H(Z — u) is equal to XX if the
system is in the positive yield state and zero otherwise. Note that the velocity of
the oscillator is non-negative when Z = u. Due to the symmetry of the oscillator,
expressions similar to equation (12) are obtained for the following expectations:

EXXH(-X)H(~Z —u)] = P{Z = —u}E[XX|Z = —u] = P{Z = u}E[XX|Z = u],
EX’H(X)H(Z — u)] = E[X’H(-X)H(~Z — u)] = P{Z = u}E[X*|Z = u],

E[XZH(X)H(Z — u)] = E[XZH(—X)H(—Z — u)] = uP{Z = u}E[X|Z = u].
(13)

Substituting the results of equations (12) and (13) into equation (11) and
setting the left sides equal to zero, i.e., considering the state of stationarity, yields
the following algebraic equations for the determination of the stationary
response moments:

0=2x12, 0=1xm— 2wk — w%(omll + (1 — 2)K13),

0 = K23 + k12 — 2P{Z = u}E[XX|Z = u],

0 = —4éwoky — 2w§(om12 + (1 — 2)K23) + 27 S0,

0= —2Ewoky; — a)g(omm + (1 —a)ks3s) + kopp —2P{Z = u}E[X2]|Z = ul,

0 = 223 — 4uP{Z = u}E[X|Z = u]. (14)

The first of equations (14) eliminates x, from consideration. Further, both the
third and last of equations (14) yield expressions for x,3;. Use will be made of the
latter, as it requires only the knowledge of the marginal probability density of X
when the system is in the plastic state, whereas the former requires information
about the joint probability density of X and X in the plastic state. Note that
by discarding the third of equation (14), four non-trivial/non-redundant
equations for the eight unknowns k1, K3, K22, K23, K33, E[X]Z = u],E[Xz\Z = ul,
and P{Z = u} remain. Hence extra information regarding the physical system,
including the probability density of X during plastic excursions, is needed to
obtain numerical results for the response moments.
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3. MARGINAL PROBABILITY DENSITY FUNCTION OF VELOCITY DURING
PLASTIC EXCURSIONS

Consider the stationary response of the corresponding linear SDOF dynamical
system. Let u be an arbitrary positive distance from the origin. It is well-known
from crossing theory, that if values of X are sampled at w-upcrossings, the
empirical distribution of X tends to a Rayleigh distribution. That is, the
probability density of X tends to one that has no probability mass arbitrarily
near zero as the velocity of the system must be greater than zero in order to have
a u-upcrossing.

From the equations of motion of the bilinear hysteretic oscillator, equation
(1), it is seen that between yield-level excursions, the system acts as a linear
oscillator. Thus, if the yield level is sufficiently high in relation to the standard
deviation of the corresponding linear oscillator, it is reasonable to assume that
between plastic excursions the oscillator’s response renormalizes to Gaussianity
(this idea forms the basis of the Slepian process approach) such that the
distribution of X at yield-level upcrossings is approximately Rayleigh-distributed
with mean /7n/20; and second moment 20§(, where o is the unconditional
standard deviation of velocity. However, this distribution does not account for
the distribution of X for the system’s entire sojourn to the plastic state. During
plastic excursions, if white noise effects are neglected, the velocity of the
oscillator monotonically decreases from its value at yield-level upcrossing to zero
at which point the oscillator exits the plastic state. Physically, this means that the
average value of X during plastic excursions is less than the average value of X
at yield-level upcrossings. Further, as every yield-level upcrossing corresponds to
a zero velocity yield-level downcrossing, it seems physically reasonable to expect
the probability density of X during plastic excursions to have some probability
mass arbitrarily near zero—possibly approaching a half-Gaussian probability
density with mean /2/mo; and second moment 3.

For low yield levels (in relation to the standard deviation of the corresponding
linear oscillator), it is not the case that the system’s response will renormalize to
Gaussianity between plastic excursions. However, the velocity at a u-upcrossing
still must be positive and this velocity will again steadily decrease to zero during
plastic excursions such that the average velocity during plastic excursions is less
than the average value at w-upcrossings. Thus, while the distribution of the
velocity at u-upcrossings is not expected to be Rayleigh, it is conjectured that the
mean and second moment of the Rayleigh distribution (with parameter ¢2X
equal to the unconditional variance of velocity of the bilinear oscillator) form
upper bounds on the mean and second moment of X during plastic excursions.
Further, it is conjectured (again for low yield levels) that the mean and second
moment of the half-Gaussian density (with parameter aé equal to the
unconditional variance of velocity) form lower bounds on the mean and second
moment of X during plastic excursions.

These conjectures are supported by results obtained through Monte Carlo
simulations. A SDOF bilinear hysteretic with wy, = 1, £ = 0-05, and o = 1/21 was
considered for various yield levels u. The intensity of the white noise excitation
was prescribed so that the mean-square displacement of the corresponding linear
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Figure 1. Conditional probability densities of X given Z = u; Monte Carlo simulations (—);
half-Gaussian (--+); Rayleigh (- - -); (@) u/oxo=025; (b) u/oxo=050; (c) ufoyo=075;
(d) lxl/(f)(‘() = 1-00.

oscillator, ‘7%(,0’ was 1, i.e., Sp = 25(»8 /. Thus, the yield level u is normalized in
proportion to the standard deviation of the corresponding linear oscillator.
Figure 1 shows the conditional probability density functions of X given that the
system is in the positive yield state in comparison with Rayleigh and half-
Gaussian densities for various values of u/ayo. The means and second moments
of the distributions are listed in Table 1. For ratios of u/oy less than or equal to
one, the means and second moments of the Rayleigh and half-Gaussian
distributions form upper and lower bounds, respectively, on the means and

TABLE 1

Means and second moments of the probability densities appearing in Figure 1

Means Second moments
uloyo,  Half-Gaussian Empirical Rayleigh Half-Gaussian Empirical Rayleigh
0-250 0-457 0-553 0-718 0-328 0-436 0-656
0-500 0-409 0-517 0-643 0-263 0-385 0-526
0-750 0-475 0-531 0-746 0-354 0-415 0-708
1-000 0-523 0-554 0-821 0-429 0-458 0-858
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second moments of the empirical distributions of X. Thus in the ensuing
analysis, the terms E[X|Z = u] and E[X?|Z = u] in equation (14) are taken to be
bounded as follows:

V2/n6, <E[X|Z = u]<\/1/204; 6§(<E[X2|Z = u <2a§(. (15, 16)

4. EQUATION FOR THE PROBABILITY OF BEING IN THE PLASTIC STATE

For ease of notation consider the following reformulation of equation (1):
X +aX +bX +cZ = W(1), (17)

where a = 2¢wy, b = w}e, and ¢ = w}(1 —«). The non-trivial/non-redundant
algebraic equations for the stationary response moments become

0=1ry — bKll —cK1i3, 0=1rKm+ (C/Cl)K23 — ﬂSo/a,
0 = —akyy — b3 — ck33 + Kkpp — 2P{Z = u}E[X2|Z = ul,
0 = 2K3 — 4uP{Z = u}E[X|Z = u]. (18)

The last of equation (18) indicates that ry; = 2uP{Z = u}E[X|Z = u] which,
given the bounds on E[X|Z = u], can be written as

k3 =2uP{Z =u}do; = fo;, /2/n<d<+/m/2, (19)

where f=2uP{Z = u}d. Substituting this result into the second of equations (18)
and using x», = E[X?] = ai yields a quadratic equation in ¢, namely

7%+ (¢f Ja)oy — nSo/a =0, (20)

whose positive root is given by

oy = —cf/2a+\/(cf/2a)2+n50/a. (21)

The standard deviation of velocity as given by equation (21) is a
monotonically decreasing function of udP{Z = u} for given system parameters.
It follows then that the mean-square velocity, aé, will also be a monotonically
decreasing function of udP{Z = u}. When u— 0, P{Z = u} — 0-5 and the system
behaves as a linear oscillator with stiffness awj. When u — oo, P{Z = u} — 0 and
the system behaves as a linear oscillator with stiffness 3. In both cases,
o'?( = 18y/2Ewo which forms an upper bound on the mean-square velocity. When
udP{Z = u} is non-zero, the oscillator’s stiffness will be repeatedly softened upon
its entries into the plastic state. This softening of the restoring force leads to
oscillations of lower frequency and, consequently, lower velocity implying that
the mean-square velocity will decrease.
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Turning now to the third of equations (18) and using k» = ¢, k23 = fo 4, and

equation (16) results in ¥
a§~((1 —g) —afoy = bkyz + cks3, (22)
where
g=2P{Z =u}e, 1<e<2. (23)

The significance of equation (22) is that the left side is entirely a function of
known system constants, parameters that are bounded, and the probability of
being in the plastic state. Consequently, if the right side of equation (22) a priori
can be well-approximated in terms of system constants and/or the probability of
being in the plastic state, the equation can be solved for P{Z = u} with regard
to the bounded constants d and e to give functioning (though not rigorous)
bounds on P{Z = u}. Thus, the problem becomes one of determining valid
approximations of k3 and k3.

5. APPROXIMATIONS OF x;3 AND k33

First consider x3;. Let p~(z) be the marginal mixed probability density of z
and let p,(z) represent the continuous part of p.(z) between —u and u. Due to
the symmetry of the oscillator, p,(z) is symmetric about zero. Assuming pz(z) to
be approximately uniformly distributed, i.e., pz(z) & (1/2u)(1 —2P{Z = u}), it
follows that

ut

K33 = E[Z%] = 2J

dz 2p(2) = P2P{Z = u} + 2J dz 22p(2)
0

0
~u2P{Z = u} + (1 - 2P{Z = u}). (24)

Figure 2 shows estimated exact values of k33 as computed via Monte Carlo
simulations in comparison with values predicted by equation (24) using the
estimated exact values of P{Z = u} as determined by Monte Carlo simulations.
As is evident, equation (24) provides a very close approximation to the actual
value of k33, especially at low values of u/cy .

To determine an approximation for 3, first note that X = Z + A where 4 is
the net plastic displacement of the oscillator. Thus,

k13 = E[XZ] = E[Z°] 4+ E[Z4] ~E[Z?] = k3, (25)

where use was made of the fact, uncovered by extensive Monte Carlo
simulations, that Z and 4 are approximately uncorrelated. This correlation is the
difference between x3 and k33 but it is quite small for values of o < 0-25 (which
covers most cases of practical interest) and reasonably small for a > 0-50 as can
be seen in Figure 3.

Thus, in the sequel the right side of equation (22) is approximated by

bicis + e A bicss + e~ (b + P(2P{Z = u} + 11 = 2P{Z = u})).  (26)
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Figure 2. Comparison of approximate and estimated exact values of k33; Monte Carlo simu-
lations (—); approximate values found using equation (25) (---+); (a) « = 0:05; (b) o = 0-25; (c)
o =0-50; (d) a = 0-75.

With the above results in conjunction with equation (22), the following equation
for the probability of being in the plastic state is obtained:

ai(l —g) —afoi, — (b+ )P 2P{Z =u} +1(1 - 2P{Z = u})) = 0, (27)

where o is given in terms of P{Z = u} by equation (21).

Equation (28) can be reduced to a quartic equation in P{Z = u} and thus has
an exact analytical solution. However, it is extremely lengthy as verified by the
software program Mathematica. Thus, for purposes of numerical evaluation,
equation (27) was solved numerically using Mathematica’s root-finding
algorithm.

6. NUMERICAL EXAMPLES

To investigate the accuracy of the results given by equation (28) its
dependence on the yield level, u#, and the secondary to primary stiffness ratio, «,
various parametric cases were considered. For each case, the intensity of the
white noise, Sy, was prescribed so that the mean-square displacement of the
corresponding linear oscillator was equal to one. Then « could be interpreted as
the ratio of the yield level to the standard deviation of the corresponding linear
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(a) (b)
0.4+

0.2

Ki3 and K33

(e (G))

0.2

1 | L 1 1 1
0.0 0.5 1.0 0.0 0.5 1.0

ul GX,O

Figure 3. Comparison of estimated exact values of E[Z? (—) with estimated exact values of
E[XZ] (----*) obtained by Monte Carlo simulations; (a) o = 0-05; (b) o = 0-25; (c) a = 0-50; (d)
o =075.

oscillator or, equivalently, the reciprocal of u could be viewed as the factor by
which the white noise intensity was increased or decreased with respect to the
linear case. Values of u considered ranged from 0-25 to 1-0 while values of «
ranged from 0-05 to 0-75. For all cases considered, w, = 1:0 s~! (without loss of
generality as time can always be measured in units of 1/mg) and & = 0-05.

In addition, recall that the parameters d and e enter equation (28) through f
and g and these parameters are restricted to the intervals /2/n<d<./n/2,
1 < e <2. P{Z = u} was evaluated in two different ways with respect to d and e,
namely, by setting d and e to their extreme low values and extreme high values,
respectively. For all cases of o considered, the values of P{Z = u} found by
setting d and e equal to their extreme low values (1/2/m and 1, respectively) were
on the high side, that is, they formed upper bounds on the probability of being
in the plastic state. These upper bounds became increasingly sharp as wu/oy,
approached 1. The opposite was true for the values of P{Z = u} found by setting
d and e equal to their extreme high values (y/7/2 and 2, respectively). In this
case, the results formed lower bounds for all values of u/oyo. Similarly, these
bounds became increasingly sharp as u/oy, approached 1. Further numerical
analysis of equation (28) reveals that P{Z = u} is inversely and monotonically
related to both d and e. That is, for a fixed value of u/oyy, when d and e take
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0.4+ ' o

0.2

0.0

P{Z =u}

0.4 -

0.2

0.0 0.5 1.0 0.0 0.5 1.0
u/o'X,O

Figure 4. Comparison of estimated exact values of P{Z = u} with solutions of equation (27);
Monte Carlo simulations (—); upper bound (----); lower bound (- - -); (a) « = 0:05; (b) o = 0-25;
(c) « = 0-50; (d) o = 0-75.

their minimum values, P{Z = u} attains its maximum value (and when d and e
take their maximum values, P{Z = u} attains its minimum value). Hence, no
combination of values of d and e would produce higher or lower values than
those found using the respective pairs of d and e given above.

Figure 4 shows comparisons of the estimated exact values of P{Z = u} with
results found by solving equation (28) using the extreme low and high values of
the ordered pair of constants d and e, namely (1/2/x, 1) and (y/7/2, 2).

7. APPROXIMATION OF THE RESPONSE MOMENTS

With bounds on the probability of being in the plastic state established, the
expression given by equation (21) can be used to determine an approximation of
0. As before with the equation for P{Z = u}, the expression for ¢; can be
evaluated using the extreme values of d and the corresponding values of
P{Z = u}. These results are presented in Figure 5. The approximate results were
essentially insensitive to the values of d used as long as the corresponding value
of P{Z = u} was used as well. This is because the variables d and P{Z = u}
appear as a product in equation (21) and recall that high values of d resulted in
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1.0
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0.5 \______,./f B \\_—_7/

ox

1.0

(c) @

0.5 —

0.0 0.5 1.0 0.0 0.5 1.0
u/o'X,O

Figure 5. Comparison of estimated exact values of o; with approximations found using
equation (21); Monte Carlo simulations (—); approximation 1 (-:--*); approximation 2 (- - -); (a)
o = 0-05; (b) « = 0-25; (c) & = 0-50; (d) « = 0-75.

low values of P{Z = u} and vice-versa. Hence, the products were approximately
equal. In Figure 5, “Approximation 1" corresponds to using d = y/n/2 (and the
subsequent value of P{Z = u}) whereas ““Approximation 2’ corresponds to using
d=/2/m.

Similarly, an approximation of oy can be computed using the first of
equations (18) which can be written as

oy = (1/b)(3, — cx13). (28)

Making use of the approximation k3 X k33 ~ u” 2P{Z = u} +%(1 —2P{Z = u}))
yields

oy = (1/b)o%, — (¢/b)u*(2P{Z = u} + (1 = 2P{Z = u})). (29)

Once again, in light of the upper and lower bounds on P{Z = u} there are
multiple ways in which to evaluate equation (29). However, a more conservative
estimate is obtained by using the lower-bound values of P{Z = u} when
evaluating the approximation to x;3 since then the right side is (relatively)
maximized. Figure 6 shows comparisons of the estimated actual values of
oy with the approximations found using equation (29) and also with
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Figure 6. Comparison of estimated exact values of oy with approximations found using
equation (30) and the method of stochastic averaging; Monte Carlo simulations (—); approxi-
mation 1 (- - - - *); approximation 2 (- - -); (a) @ = 0-:05; (b) a = 0-25; (c) & = 0-50; (d) o = 0-75.

approximations found using the method of stochastic averaging [31]. (In the
figure captions ‘““Approximation 17 corresponds to using the value of ¢ found
in “Approximation 17 above along with the minimum approximation to 3.
Similarly, “Approximation 2” corresponds to using the value of ¢; found in
“Approximation 2" above along with the minimum approximation to x;3.) As
with the approximations to ¢, the approximations to oy very closely agree with
the estimated exact values for each value of a throughout the range of u/oy,
values. In contrast, the results found from stochastic averaging only agree well
with the estimated exact results in the cases of o = 0-50 and 0-75. In the case of
o = 0-50, the results found from both of the approximations proposed here more
closely agree with the estimated exact results in comparison with the results from
stochastic averaging. In the case of « = 0-75, both of the approximations and the
stochastic averaging method produce roughly similar results which agree very
well with the estimated exact results (as is evident from Figure 6(d)). The
inaccuracy of the stochastic averaging method for values of a < 0-50 stems from
the fact that in these cases the underlying assumption of the method, namely,
that the system is weakly non-linear, is violated. The system is weakly non-linear
if o is close to 1 or the ratio oyo/u is <1. The latter condition is not met here
because low yield levels with respect to oy are being considered.
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8. CONCLUSIONS

Algebraic equations were derived for a bilinear hysteretic oscillator excited by
stationary Gaussian white noise that related stationary response moments,
conditional response moments, and the probability of being in the plastic state.
Then, considering the physics of the oscillator at low yield level upcrossings, «
priori bounds, verified by Monte Carlo simulations, were assigned to the
conditional response moments E[X|Z = u] and E[X?|Z = u]. These bounds in
conjunction with a priori approximations of E[XZ] and E[Z?] led to an equation
expressed in terms of known system constants, bounded parameters, and the
probability of being in the plastic state, P{Z = u}, that was then solved
numerically to determine bounds on P{Z = u}. With bounds on P{Z = u}
established, very accurate approximations of o¢;, and oy were evaluated as
functions of P{Z = u}.

The primary usefulness of the derived expressions is that they provide a quick
and easy way to determine very accurate second order stationary response
statistics of a bilinear hysteretic oscillator for a wide array of system parameters,
including highly non-linear cases (whether due to low yields levels, small values
of «, or both). These stationary statistics, in turn, may be used in rudimentary
design or risk analysis considerations. Further, given the values oy, 0; and
0z = /K33, it may be possible to approximate higher order moments and joint
probability density functions using a Gram—Charlier series with a Minai—Suzuki
modification [32, 33, 18].

The advantage of using the expressions proposed herein is that they provide
very accurate approximations even for cases in which other approximate
methods, such as the method of stochastic averaging, fail due to severe non-
linearity. Moreover, an added benefit of using the derived expressions is that in
order to determine the stationary statistics of the displacement and velocity,
bounds on the probability of being in the plastic state have to be computed.
These bounds on the (stationary) probability of being in the plastic state
potentially may be useful quantities for purposes of assessing reliability of the
system as the reliability of the system most surely depends on the system’s
excursions into the plastic state.
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